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Background A basic construction in proba-
bility theory is that of normalising a sub-
probability distribution of weight 6 1 to a
probability distribution of weight 1. The
simplest case is that of �nitely supported,
discrete probability sub-distributions on
a set A, i.e., �nitely supported functions
ω : A→ [0, 1] with ω(A) :=

∑
a∈A ω(a) 6 1.

If ω(A) 6= 0, then the normalisation ω̄ of ω
is de�ned by ω̄(a) = ω(a)/ω(A). This is,
of course, a probability distribution, i.e.,
ω̄(A) = 1. But if ω(A) = 0, then we can-
not normalise ω; so normalisation is only
a partial operation. In [2], Jacobs in-
troduces hypernormalisation which, among
other things, addresses this defect.
Hypernormalisation is a total function

N : D(A1 + · · ·+An)→ D(DA1 + · · ·+DAn)

where D(X) will denote the set of �nitely
supported probability distributions on X.
To de�ne N at ω ∈ D(A1 + · · · + An), we
�rst restrict ω along the n coproduct injec-
tions to get sub-distributions ωi on Ai; we
then select the non-zero sub-distributions
among these, say ωi1 , . . . , ωim; �nally, we
de�ne N (ω) to take the value ωik(Aik) at
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the element ωik in the DAik-summand of
DA1 + · · · + DAn, and to be zero elsewhere.
So N (ω) “normalises the non-zero distri-
butions among ω1, . . . , ωn and records the
weights”.
In [1], I establish links between hyper-

normalisation, and structures arising in
monoidal category theory, linear logic and
quantum algebra—as I will now explain.

Convex coproducts The assignation X 7→ DX
underlies the �niteGirymonad D on the cat-
egory of sets, whose algebras are convex
spaces. A (abstract) convex space is a set
A with with a “convex combination” op-
eration (0, 1) × A × A → A, which we write
as r, a, b 7→ r(a, b) or r, a, b 7→ r · a + r∗ · b,
where r∗ := 1 − r. The axioms are that
r(a, a) = a, r(a, b) = r∗(b, a) and r(s(a, b), c) =

(rs)(a, r·s∗(rs)∗ (b, c)) for a, b, c ∈ A and r, s ∈ (0, 1).
The �rst recasting of hypernormalisa-

tion is in terms of coproducts in the cat-
egory Conv of convex spaces. These are
unusually simple; the binary coproduct is:

A ? B = A + (0, 1)×A×B + B (1)

with a suitable convex structure. The outer
summands give the coproduct inclusions
ι1 : A→ A?B ← B : ι2, and the middle sum-
mand gives elements of the form r ·a+r∗ ·b.
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Now the free functor Set→ Conv sends a
set A to DA with the convex structure in-
duced pointwise from [0, 1]. Being a left ad-
joint, F preserves coproducts, and so we
have an isomorphism

ϕ : D(A+B)
∼=−→ DA ?DB

of convex spaces. Working through the
de�nitions, we see that ϕ is very close to
being (binary) hypernormalisation:

ϕ(ω) =


ι1(ω|A) if ω(A) = 1;

ι2(ω|B) if ω(B) = 1;

ω(A) · ω|A + ω(B) · ω|B otherwise.

Recapturing N Nice as it is, this map ϕ is
not quite hypernormalisation. How do we
close the gap? Since hypernormalisation
D(A+B)→ D(DA+DB) fails to be a map of
convex spaces, we must for this go outside
the category Conv of convex spaces, and
we do so in a seemingly simple-minded
manner, by passing to the categoryConvarb

of convex spaces and arbitrary maps.
The key point is that the coproduct

monoidal structure (?, 0) on Conv extends
to a monoidal structure on Convarb. On
objects this is (necessarily) de�ned as be-
fore; while the tensor of maps in Convarb

is given by f ? g = f + ((0, 1)× f × g) + g, i.e.,
exactly the same formula as in Conv.
Using this tensor, we obtain for any con-

vex spaces A and B a map in Convarb:

A ? B
ηA?ηB−−−−→ DA ?DB ϕ−1

−−→ D(A+B)

where ηX : X → D(X), the unit of the �nite
Giry monad, sends x ∈ X to the Dirac dis-

tribution at x. Working through the de�-
nitions, the displayed composite sends el-
ements ι1(a) and ι2(b) of A ? B to the Dirac
distributions on A + B concentrated at a,
respectively b; while an element r · a+ r∗ · b

of A ? B is sent to the two-point distribu-
tion with weight r at a and weight r∗ at b.
Combined with our description of ϕ, this
shows that N is the composite:

D(A+B)
ϕ

��

N // D(DA+DB)

DA ?DB ηDA?ηDB // DDA ?DDB .
ϕ−1

OO

(2)

Linear exponential monads This re-derivation
of hypernormalisation leaves one question
unanswered: why should there be an ex-
tension of the coproduct monoidal struc-
ture on Conv to Convarb? A moment’s
thought shows the fundamental reason to
be that the underlying set of A?B depends
only on the underlying sets of A and B, and
not on their convex space structure.
This suggests that the symmetric

monoidal structure on Conv could be a
lifting of one on Set; i.e., that Set could
have a symmetric monoidal structure
(?, 0) making U : (Conv, ?) → (Set, ?) strict
symmetric monoidal. Were this so, then
we could re-�nd the monoidal structure
on Convarb by factorising U as (bijective
on objects, fully faithful) in the category
of symmetric monoidal categories.
In fact, this is what happens; we describe

the relevant monoidal structure on Set—
the Giry monoidal structure—below. How-
ever, �rst we note that this monoidal
structure’s lifting to Conv is really struc-
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ture on the monad D: it says that it is a
linear exponential monad.
A linear exponential monad T on a sym-

metric monoidal category (C,⊗, I) is a
monad for which (⊗, I) lifts to T-Alg,
and there becomes �nite coproduct. Such
monads interpret the connective ? (“why
not?”) of linear logic. In fact, they also
interpret abstract hypernormalisation.
Indeed, if C has �nite sums, then we get

invertible maps (“Seely isomorphisms”)
ϕ : T (A + B) → TA ⊗ TB from the fact that
TA⊗TB is a coproduct of free T-algebras TA
and TB. Mimicking (2), we get hypernor-
malisation maps N : T (A+B)→ T (TA+TB)

by taking N = ϕ−1 ◦ (ηTA ⊗ ηTB) ◦ ϕ.
These generalise precisely the maps N of

the motivating case, and I show in [1] that
many pleasant algebraic properties of that
case carry over to the general one.

The Giry tricocycloid We now construct the
Giry monoidal structure on Set. Remark-
ably, a construction from quantum algebra
provides just what is needed.
An abelian tricocycloid [4] in a symmetric

monoidal category C comprises an object
H; an isomorphism v : H ⊗H → H ⊗H sat-
isfying (v⊗1)(1⊗σ)(v⊗1) = (1⊗v)(v⊗1)(1⊗v);
and an involution γ : H → H satisfying
(1⊗ γ)v(1⊗ γ) = v(γ⊗ 1)v. If C has �nite co-
products distributing over ⊗, then (H, v, γ)

induces a symmetric monoidal structure
on C, with unit 0 and binary tensor

A ? B = A+H ⊗A⊗B +B . (3)

The maps v and γ appear in the associativ-

ity and symmetry constraints respectively.
Comparing (1) with (3) suggests instan-

tiating this in Set with H = (0, 1). Indeed,
de�ning v by v(r, s) = (rs, rs∗

(rs)∗ )—the terms
appearing the third convex space axiom—
and γ by γ(r) = r∗ yields an abelian trico-
cycloid, whose induced monoidal structure
is the Giry one.

Other examples In [1] I examine the force
of hypernormalisation for a range of lin-
ear exponential monads. In particular, I
consider the expectation monad [3] on Set,
involving involves �nitely additive rather
than �nitely supported measures. This is
linear exponential for the Giry monoidal
structure; in fact, I conjecture that the ex-
pectation monad is terminal among such
linear exponential monads.
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